

**Thiazoline Analogues of Epiderstatin,
New Inhibitors of Cell Cycle
of tsFT-210 Cells**

B. RADHA RANI,[†] CHENG-BINI CUI,[†]
MAKOTO UBUKATA^{*,†,††} and HIROYUKI OSADA[†]

[†]The Institute of Physical and Chemical Research (RIKEN),
Wako, Saitama 351-01, Japan

^{††}Biotechnology Research Center,
Toyama Prefectural University,
Kosugi-machi, Imizu-gun, Toyama 939-03, Japan

(Received for publication June 1, 1995)

In the course of our study on an alternative synthesis of (\pm)-epiderstatin, we found some interesting observations, which helped us for preparing epiderstatin analogues. We developed a new methodology for the syntheses of epiderstatin analogues by using an unusual reaction to study their structure-activity relationship. During study, we found that epiderstatin is not a real inhibitor of signal transduction of EGF, but the inhibition arose from acetoxyheximide contaminating the preparation of the natural epiderstatin.¹⁾ However, thiazoline analogues of epiderstatin showed unexpected biological activities. In this paper, we wish to report the syntheses of analogues, **1a**, **1b**, **2a**, **2b**, **3a** and **3b**, shown in Fig. 1 and their biological activities.

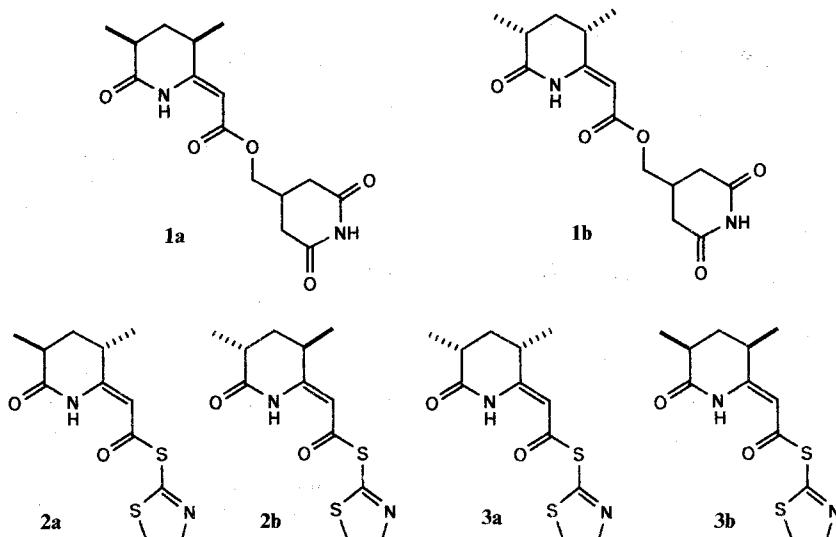
The syntheses of the racemic epiderstatin analogues, **4**, **5**, **10** and **11**, are outlined in Fig. 2. Treatment of *cis*, *trans* mixture of 3,5-dimethyl-2-thioglutaramide²⁾ (**1**) with (carbethoxymethylene)triphenylphosphorane (toluene, reflux for 22 hours) gave an ethyl ester (**2**) in 42% yield. Hydrolysis of **2** (LiOH, H₂O-MeOH-dimethoxyethane (1:2:2), r.t., 12 hours) afforded a carboxylic acid (**3**) with isomerization of the double bond at C₅ position in 51% yield. Condensation of **3** with 2-

mercaptopthiazoline (dicyclohexylcarbodiimide, dimethylaminopyridine, 0°C→r.t., 5 hours)³⁾ afforded stereoselectively the desired thioester (3S*/5S* isomer (**4**); 3S*/5R* isomer (**5**), ratio of 2:98) in 47% yield. Isomerization of the double bond into Z-isomer at C₆ position during the reaction may be caused by the intramolecular hydrogen-bonding stabilization between C₈ carbonyl and the amide proton. 3-Hydroxymethylglutarimide (**9**) was synthesized as indicated in Fig. 3. Treatment of 3-Phenylglutaric acid⁴⁾ (**6**) with urea at 150°C gave **7** in 97% yield. Oxidative degradation of **7** (NaIO₄, Ru(III)Cl₃ r.t., 36 hours) afforded the desired product (**8**) in 85% yield. Chemoselective reduction⁵⁾ of **8** using N,N-dimethylchloromethyleneiminium chloride and sodium borohydride gave 3-Hydroxymethylglutarimide (**9**) in 60% yield. Condensation of **3** with **9** afforded ester (3S*/5S* isomer (**10**); 3S*/5R* isomer (**11**), ratio of 9:91) in 19% yield. Optical resolution of each analogue was carried out by chiral HPLC to give optically pure samples shown in Fig. 1.

The absolute configurations of synthetic epiderstatin and nine analogues, **1a**, **1b**, **2a**, **2b**, **3a**, **3b**, were determined by NMR and CD analyses. The absolute configurations of C₃/C₅ *trans* isomers, **2a** and **2b**, were determined by the comparison of their Cotton effects, $\lambda_{332} + 3.9$ for **2a** and $\lambda_{332} - 3.0$ for **2b**, with the data ($\lambda_{287} + 1.78$) of synthetic epiderstatin. The absolute configurations of *cis* isomers, **1a**, **1b**, **3a**, **3b** were determined by the application of allylic axial chirality approach¹⁾ at C₅ axial protons which were deducible from the large coupling constant value (12.7 Hz) between 4-H and 5-H for each analogue.

After separation and characterization of each isomer, we examined the flat reversion activities on *src^{ts}*-NRK cells, the cell cycle inhibitory activities on tsFT-210 cells, effects on [³H]thymidine uptake into EGF-stimulated Balb/MK cells and the antifungal activities. Any an-

Fig. 1. Structures of epiderstatin analogues.



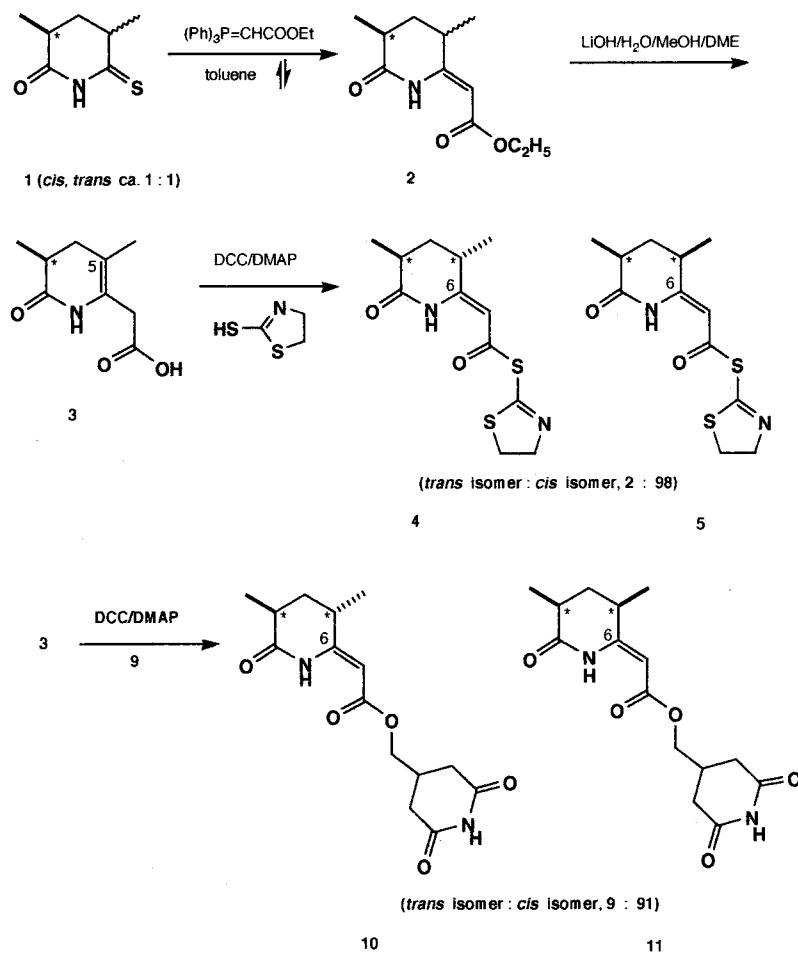
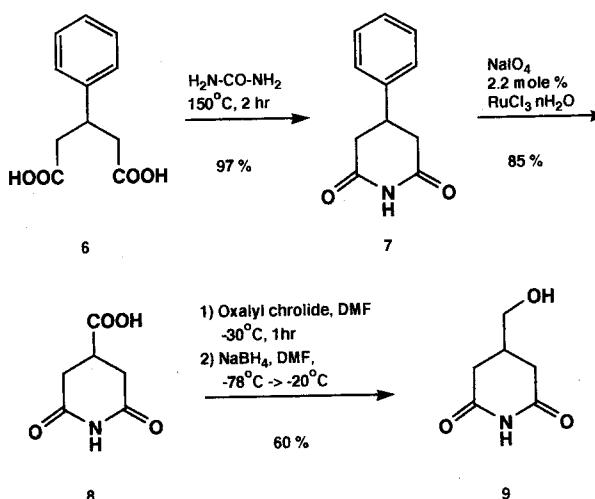
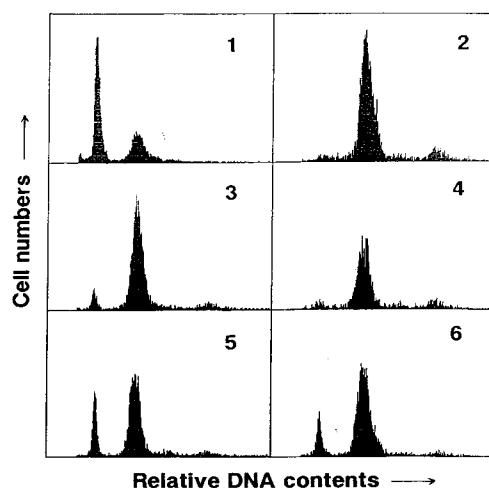



Fig. 2. Syntheses of racemic forms of epiderstatin analogues **4**, **5**, **10** and **11**.

Fig. 3. Synthesis of 3-hydroxymethylglutarimide.

Fig. 4. Effects of thiazoline analogues, **2a**, **2b**, **3a** and **3b**, on the cell cycle of tsFT-210 cells.

Exponentially growing cells were synchronized at the G₂ phase by incubation at 39°C (non-permissive temperature) for 16 hours and the cells were released to 32°C for 4 hours after treatment with the samples. 1: no drug control; 2: stauroporine (0.43 μM); 3, 4, 5, 6: thiazoline analogues **2a**, **2b**, **3a** and **3b**, respectively (each 88 μM).

ologue as well as synthetic epiderstatin¹⁾ did not induce the flat reversion of the *src*^{ts}-NRK cells at the dose of 50 µg/ml. However the thiazoline analogues, **2a**, **2b**, **3a** and **3b**, showed different biological activities. The analogues showed antifungal activities against *Piricularia oryzae* (**2a**: 11 mm, **2b**: 15 mm, **3a**: negative, **3b**: negative, each at 350 µg/disc, conventional paper disc method) and inhibited the cell cycle progression of tsFT-210 cells at G₂/M phase as shown in Fig. 4. The activities of C₃/C₅ *trans* isomers, **2a** and **2b**, were rather stronger than those of *cis* isomers, **3a** and **3b**. Although staurosporine, which is a broad spectrum inhibitor of protein kinases, inhibited the cell cycle progression of tsFT-210 cells under the random culture condition as well as the synchronized culture condition, thiazoline analogues, **2a**, **2b**, **3a**, **3b**, arrested the cell cycle only under the synchronized culture condition. Thus these thiazoline analogues may be useful as selective inhibitors of cell cycle progression of tsFT-210 cells synchronized at G₂ phase.

Experimental

General Methods

Melting points were obtained using a Yanagimoto micro-melting point apparatus and were uncorrected. Optical rotations were taken on a JASCO DIP-370 polarimeter. CD spectra were measured on a JASCO J-270 spectropolarimeter. ¹H and ¹³C NMR were measured on JEOL EX-270, α -400 and GSX-500 instruments. MS were measured on Hitachi M-80 and JEOL HX-110 mass spectrometers. Spectral properties of key intermediates (**2**, **3**, **9**) and synthetic analogues (**1a**, **1b**, **2a**, **2b**, **3a**, **3b**) are as follows. Compound **2**: EI-MS *m/z* 211 (M⁺); ¹H NMR (CDCl₃) δ 1.23, 1.26, 1.27, 1.28 (total 6H, each d, *J*=7 Hz), 1.267 (3H, t, *J*=7 Hz), 1.5 (1/2H, dt, *J*=13, 12.5 Hz, *cis* isomer), 1.8 (1H, m, *trans* isomer), 1.94 (1/2H, ddd, *J*=13, 5.0, 4.5 Hz; *cis* isomer), 2.54, 2.65 (total 2H, each m, *trans* and *cis* isomers), 4.16, 4.17 (total 2H, each m), 4.87 (1/2H, s; *trans* isomer), 4.91 (1/2H, d, *J*=2 Hz; *cis* isomer), 10.6, 10.8 (total 1H, each brs). Compound **3**: The acid was highly unstable and immediately used for the next reaction; ¹H NMR (CDCl₃) δ 1.12 (3H, d, *J*=6.9 Hz), 1.69 (3H, s), 2.0 (1H, dd, *J*=16.5, 10.8 Hz), 2.2 (1H, dd, *J*=16.5, 6.6 Hz), 2.4 (1H, m), 3.1 (2H, brs), 7.27 (1H, brs), 8.6 (1H, brs). Compound **9**: EI-MS *m/z* 143 (M⁺); ¹H NMR (CD₃OD) δ 2.28 (1H, m), 2.43 (2H, dd, *J*=17.5, 11.0 Hz), 2.62 (2H, dd, *J*=17.5, 4.2 Hz), 3.52 (2H, d, *J*=5.4 Hz). Compounds **1a** and **1b**: Optical resolution of *cis* isomer (**11**) was carried out by chiral HPLC (CHIRALPAK AS, 10×250 mm; EtOH, Flow rate 1.2 ml/minute; detector wave length, 295 nm; temperature, 25°C); retention time (Rt) for **1a**, 29.8 minutes; Rt for **1b**, 37.3 minutes. **1a**: $[\alpha]_D^{24} + 6.9^\circ$ (*c* 0.22, CH₂Cl₂); CD $\Delta\epsilon^{24}$ (*c* 0.005, MeOH) $\lambda_{267} + 1.35$; EI-MS *m/z* 308 (M⁺); ¹H NMR (CD₂Cl₂) δ 1.22 (6H, d, *J*=6.8 Hz), 1.49 (1H, dt, *J*=13.2, 12.7 Hz),

1.94 (1H, ddd, *J*=13.2, 4.9, 4.4 Hz), 2.42 (2H, ddd, *J*=17, 11.7, 1.5 Hz), 2.54 (2H, m), 2.66 (1H, m), 2.72 (2H, dd, *J*=17, 4.2 Hz), 4.10 (1H, dd, *J*=5.9, 1.5 Hz), 4.92 (1H, d, *J*=1.5 Hz), 7.93 (1H, brs), 10.62 (1H, brs). **1b**: $[\alpha]_D^{24} - 10.3^\circ$ (*c* 0.18, CH₂Cl₂); CD $\Delta\epsilon^{24}$ (*c* 0.005, MeOH) $\lambda_{267} - 1.39$. Compounds **2a** and **2b**: Optical resolution of *trans* isomer (**4**) was carried out by chiral HPLC (CHIRALPAK AS, 10×250 mm; EtOH, Flow rate 2.2 ml/minute; detector wave length, 295 nm; temperature, 60°C); Rt for **2a**, 14 minutes; Rt for **2b**, 24.4 minutes. Compound **2a**: MP 108.5~110°C; $[\alpha]_D^{24} + 26.3^\circ$ (*c* 1.33, CH₂Cl₂); CD $\Delta\epsilon^{24}$ (*c* 0.005, MeOH) $\lambda_{332} + 3.9$; EI-MS *m/z* 284 (M⁺); ¹H NMR (CD₂Cl₂) δ 1.31 (3H, d, *J*=7.3 Hz), 1.25 (3H, d, *J*=6.8 Hz), 1.82 (2H, m), 2.68 (1H, dquint, *J*=9.3, 6.8 Hz), 2.8 (1H, m), 3.28 (2H, t, *J*=7.6 Hz), 4.52 (2H, t, *J*=7.6 Hz), 6.67 (1H, s), 10.9 (1H, brs). Compound **2b**: MP 104.5~106°C; $[\alpha]_D^{24} - 21.8^\circ$ (*c* 1.42, CH₂Cl₂); CD $\Delta\epsilon^{24}$ (*c* 0.005, MeOH) $\lambda_{332} - 3.0$. Compounds **3a** and **3b**: Optical resolution of *cis* isomer (**5**) was carried out by chiral HPLC (CHIRALPAK AS, 10×250 mm; EtOH, Flow rate 2.2 ml/minute; detector wave length, 295 nm; temperature, 60°C); Rt for **3a**, 15 minutes; Rt for **3b**, 20.5 minutes. Compound **3a**: MP 153~154°C; $[\alpha]_D^{24} - 33.2^\circ$ (*c* 1.0, CH₂Cl₂); CD $\Delta\epsilon^{24}$ (*c* 0.005, MeOH) $\lambda_{329} - 2.4$; EI-MS *m/z* 284 (M⁺); ¹H NMR (CD₂Cl₂) δ 1.23 (3H, d *J*=6.8 Hz), 1.25 (3H, d, *J*=6.8 Hz), 1.53 (1H, dt, *J*=13.2, 12.7 Hz), 1.97 (1H, ddd, *J*=13.2, 4.9, 4.4 Hz), 2.56 (1H, dqd, *J*=12.7, 6.7, 4.9 Hz), 2.75 (1H, dqdd, *J*=12.7, 6.8, 4.4, 2.0 Hz), 3.29 (2H, t, *J*=7.3 Hz), 4.54 (2H, t, *J*=7.3 Hz), 6.83 (1H, d, *J*=2 Hz), 11.1 (1H, brs). Compound **3b**: MP 156~157°C; $[\alpha]_D^{24} + 33.5^\circ$ (*c* 1.0, CH₂Cl₂); CD $\Delta\epsilon^{24}$ (*c* 0.005, MeOH) $\lambda_{329} + 3.1$.

References

- 1) UBUKATA, M.; B. R. RANI, C.-B. CUI & H. OSADA: Preparation of optically active epiderstatin and its stereoisomers—Epiderstatin is not a real inhibitor of the mitogenic activity induced by epidermal growth factor—. J. Antibiotics 48: 1176~1178, 1995
- 2) Dow, R. L.; M. A. HAIN & J. A. LOWE III: Total synthesis and stereochemical assignment of (\pm)-epiderstatin. Tetrahedron Lett. 33: 309~312, 1992
- 3) NAGAO, Y.; K. KAWABATA & E. FUJITA: Efficiently monitored reduction of carboxylic acids into alcohols or aldehydes via 2-thiazoline-2-thio esters by sodium borohydride or di-isobutylaluminium hydride. J. Chem. Soc. Chem. Comm., 330 (1978)
- 4) YABUTA, G. & K. MORI: Synthesis of some β -substituted δ -lactones and high performance liquid chromatography of the optical purity. Nippon Nogeikagaku Kaishi 56: 1121~1125, 1982
- 5) FUJISAWA, T.; T. MORI & T. SATO: Chemoselective reduction of carboxylic acids into alcohols using N,N-dimethylchlotomethyleniminium chloride and sodium borohydride. Chemistry Letters 835~838, 1983